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Abstract

Using the Los Alamos Low-Energy Fusion Cross-Section Facility (LEFCS), we
have completed the study of the D(t,a)n reaction from Et = 12.5-117 keV, and
nov have measured angular distributions of the reactions D(d,p)T and D(d, 3He)n
from E4 = 20-117 keV. The exparimental equipment features a windowless
cryogenic target, a precision beamn-intensity calorimeter, a 10- to 120-keV
accelerator producing negative tritium ions, an accurate target gas-flow and
temperature system, and a tritium gas-handling systea. Most of the quite
snisotropic angular distribuiicns of the D + D reactions have relative errors
of about 1X and the integrated cross sections have absolute errors of about
1.3X. Astrophyesical 8 functions extracted from the data and also from a
least-squaras fit of a + b cos20 to the data show a curious behavior with
energy. The cross sections, which agree with previous but less accurate data,
are compared with R-Matrix calculations. We also show praliminary results for
alpha-particle spectra of the T(t,a)nn reaction. A feature of chis experiment
is the flow through our windowless target of 1.3 standard liters of tritium gas

per cay.
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1. Introduction

The Los Alamos program 1in Low-Energy Fusion Cross Sections (LEFCS) was
begun several years ago to improve the accuracy of and clear up discrepanciea
[1) arong measurad cross sections for the baeic fusion reactions D(t,o)n and
T{t,a)nn. The D+D reactions D(d,He)n and D(d,p)T have no major discrepancies,
but have been studied as a check of our system and to improve the accuracy of
the existing data. All of these reactions are of interest in the phyaics of
few-body nuclear iateractions and will be important in the design of the first
magnetic- and inertial-confinment fusion reactors that will eventually provide
sufficient energy for commercial use. These reactore are expected to operate
in the temperature range k7 = 1-30 keV, which corresponds to laboratory
bombarding energies having a large overlap with our experimental range of
10-120 keV.

Our D(t,a)n experiment is now complete and published [2], and has produced
absolute cross sections with 1.4X absolute error over most of the range of 8.3
to 78.1 keV equivalant deute~on bombarding emergy. We have now completed data
taking for the D+D channels and are in the process of performing the T(t,a)nn
experiment.

In thia psper we will ehow eramples of raw and analyzed angular
dietributions of the D+D data, the subsequent integrated cross nections, and a
first look at the results of the T(t,a)nn experiment.

The experiments are performed by accelerating negative.y charged D or T
ions through a windowless, cryogenically pumped, flowing gas carget of Dy or T,
and into a beam calorimeter. The target deneity 1is measured and the
calorimetar calibration 1is checked by using particle beams of several MaV

snergy frum the Tandem Van de Graaff of the Los Alamos Ion Beam Facility. A
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calibrated resistor sestack 1is used to determine the LEFCS accelerator voltsge

and thus the beam energy to high precision.

2. Apparatus and Experimental Procedure

The experimental equipment and procedures are described in detail in Refs.
2-5, and only an overview gnd features new to the D+D and T+T experiments will
be given here. Figure 1 shows a schematic diagrau of the LEFCS system. The
design of the experiment has been dominated by the need for accurate knowledge
of the bombarding energy, detection of ac low a counting rate as ppssible, and
the olimination of as many sources of systematic error as possible. A
cryogenic windowless gas target was chosen to avoid energy-loss uncertainty in
entrance and exit foils. A temperature of the target chamber (10.5 K for
deuteriun and 11.2 K for tritium gas) just above the freezing point of the
target gas gives the maximum target density compatible with an appropriate
energy loss in the target. The resulting gas density 1is 1low, approximately
1016 nuclei/cmd. The target gas, aftar leaving the target, Ls pumped (frozen)
by nearby 4-K surfaces. Accurate control of the target density ie maintained
by precise control of the continous flow of deuterium or tritium (ut 5 standard
cc/min) and of the temperature at the reaction volume. Alpha particles,
protons, tritons, and 3He particles from the various raactions come out of the
cryogenic target region through thin exit foils and ara detected by standard
surface-barrier solid-state detactore. The product Gn of the geometry factor G
and the target density n for deuterium is calibratad uweing a 10-MeV proton bean
from the Van de Graaff; the necessary D(p,p)D accurate cross sections wera
measured by us in a sepsrate axperiment (2] wusing the Los Alamos precision

30-inch ocattering chamber. The Gn product for a tritium gas target was found



-
by using a deuterium beam and normalizing to the D(t,a)n cross section
previously measured [2].

Because the low energy beam undergoes a large amount of charge exchange as
it passes through the target, we measured the beam intensity with an accurats
calorimeter [2,6], having an error of less than 0.5%. An extensive tritium
handling system is necessary to be able to use and recover tritium in either
the ion source or target. We used roughly one standard liter of tritium in a
typical run day vhen using a tritium target. A negative ion beam was used to
avold unwanted molecular species, and to reduce problems associated with
slit-edge scattering. We typically used a very stable beam of 1-5 uA with
99,57 transnission through a 2.4-mm target aperture. The critical beam energy
was determined primarily by measuring the accelerator high voltage with a
precision resistor etack and then wmsking various small corrections. The
resistor stack calibration is traceable to the primary voltage standard at the
National Bureau of Standards.

Of the many sources of aerror considered [2] the relative error of the D+D
data is dominated by fluctuations in the target density, counting statistics,
and the repeatability of the calorimeter measurement; the latter two error
sources were important especially at low energies. The absolute scale arror is
largely due to the uncertainty of the D(p,p)D calibration croes saction (1.2X).

The T+T experiment has the additional ccaplication that there are 3
reaction prodncts, resulting in the strength of the reaction being spread out
in a spectrum of alpha energies. In this case neutron background contributes
significantly to the ralative error. The absolute error is largely due to the
uncertainty of the T(d,a)n calibration cross section (1.4%). We expect to

obtain a total absolute error in the liitegrated croes section of 5X or better.
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3. The D(d,°He)n and D(d,p)T Reactions

Figure 2 gives an example of the raw data for the D+D interaction. The proton
peak 1s at an energy {about 4 MeV) near to that of the alpha particle of the
D(t,a)n reaction [2) and was easily measured accurately. The 3JHe and triton
peak are at or balow 1 MeV, and improvements decreasing the eiectronic noise
and neutron hackground were made before satisfactory results were obtained.
The . beam stop and various slits weie baked to drive off impacted tritium from
early runs with s triton bean, eliminating background neutrons from the T(d,n)
reaction. A software algorithm was introduced i{n our data acquisition program
to eliminate multiple noise events caused by occasional sparking 1in our
accelerator.

The angular distributions at 110 keV bombarding energy are shown in figure
3. These and the following results are preliminary, waiting for esmall final
corrections. Unlike the D(t,a)n reaction there is a remarkable anisotropy,
largest in the neutron branch. We made measurements at 11 bombarding energies
from 20-117 keV. Most of the angular distributions have relative arrors on the
order of 1X, and the resulting integratad cross sections have absolute errors
of about 1.5%. The D(<,’He)n integrated cross-section exitation function is
shovn in figure 4 on a semi-log plot. Seen is the familiar shurp rise due to
the coulomb-barrier penetration; but because of this rise it is not very
irnformative to compara our data with other work on such a plot. We prefer
instead to present the data as the astrophvsical S function (2] which is
universally used in the field of nuclear sstrophysice and factors out in the
incident channel the the energy dependence of the Coulomd barrier and the

wavelength of the bombarding particle, leaving in tha 8 function the more
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specific nuclear effects: S = 0.5 E4 © exp(44.402 E"1/2), Here E4 1s given in
keV, c in b, and S in keV b.

Thus, figure 5 presents S(E) for our data. Relative errors are shown.
The straight lines are least-squeres fits to the data. The E=0 intercepts are
S(0)=53.6 (n3He) and S(0)=55.7 (pt) kev b. Shown 1in figure 6 are our
S-function values compared with a representative selection of data from a
nunber of absolute measurements [7] performed in the period from 1948-1960. As
mentioned in the introduction, no discrepancy is resolved, but the accuracy cf
D(d.3He)n and D(d,p)T cross sections in this energy region has been greatly
improved.

Returning to the angular distribution data, we have made 2 least squares
fit using our data to the form ¢ = a + b c0828, The 3 and P-wave contr;butiono
are represented by a and b respectively. Given in figure 7 ara the S- and
P-wave S functionse for the +two channels. The strength a2 P-vave
interaction at this 1low energy is understandable when one notee that this
region of ex-itation in the compound system (Ex- 24 MeV in “He), 1s dominated
by negative parity 1levels helping the P-wave compete in spite of the
suppression by the angular momentum barrier. Less well understood are the
relative intensities of Sb for the n3He and pt channels, and the markedly
different slnpes of S, for the two channels. The anisotropy coefficients
A = b/a of our data agree well w'th thcse of Theus, McGarry, and Beach whose
definitive study (8] of the relative angular distributions of the D+D reaction

channels ranges from 20 to 350 keV.
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4. The T(t,a)nn Reaction

Several factors make the T+T experiment considerably more difficult. As
mentioned earlier the 3-body alpha particle spectrum makes the neutron
background a much more significant source of error. The work done in reducing
these effects in the D+D experiment greatly helped. A sample of the raw data
spectrum for the sum of four 100-minute runn is shown in figure 8. The large
peak in channel 200 (about &4 MeV) are alpha particles from the D(f,a)n
reaction, the deuterium being a 0.5% contaminant in the target gas. In the
region of channel 20 to 50, noise and neutron background become important.

After suitable subtractions, what is left is an expected [9] double-humped
alpha particle spectrum of the T(t,a)nn reaction. Integration over alpha
energy *nd angle (assuming isotropy in the center-of-mass system) gives results
shown 1in figute 9 in which are plotted the energy dependence of the S function
from the preliminary data taken to date at E, = 117, 105, 90, and 75 keV. Our
data are shown with 5X error bars. (me sees the improvement over previous data
(10~12]. Note that the S function is flat (or very nearly so) with energy
whilae the in the D+D case it falls with decreasing energy. How low we will be
able to go in energy depends on how rapidly the neutron flux and cross section

fall off., We hope to raach 30-40 keV.

5. Future Plane

Aftear finishing the D+D and T+T experiments we hope to atteapt a study of
the low-intensity, but energetic, gamma rays produced in some of the pertinent

few-body reactions as diagnostics of plasma conditions. A measuremant of the
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3He(d.p)"He reaction would be of interest and may be possible at the highest

energies we can obtain, 100 to 117 keV.
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Figure Captionse

Fig. 1. Schematic diagram of the Los Alamos low—cnergy fusion cross section

(LEFCS) facility.

Fig. 2. D+D raw dat spectrum at 97 keV and 45°. In order of increasing

channel (energy) the peaks are 3He, T, and P.

Fig. 3. Example of angular distributions for the D+D reactions at 110 keV
bombarding energy. The dashed line and solid circles are for the ndHe channel,
and the solid curve and crosses are for the pT channel. The curves are from

our least squares fit to the data (a + t cos26), Note the supressed zero.

Fig. 4. Excitation function for the D(d,3He)n reaction integrated cross

saction. The absolute error bars are smaller than the plotting symbol.

Fig. 5. Preliminary integrated D+D § Functions. Note the supressed =zero.
Relative errors are shown. The curves are least-squares fits to a straight

line.

Fig. 6. The D+D S functions compared with those of other expariments.
Absolute errors are shown. We hava aseigned 3% errors to our data (black
circles) and expect in the final analysis that the errors will be smaller.
Also shown are & representative selection of data from other experiments (Ref.

7).

Fig. 7. 8 functions for D+D P- and S-wave interactions for each channel, §,

and 8y,. Note the supressed rero for 8,. The curves are only eye guides.

Fig. 8. T(t,a)nn reaction raw data for 45° 1ab angle and 113-keV bombarding
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energy. Note the large peak of alpha particies from the 0.5 deuterium

contaminant in the target gaa.

Fig. 9. Integrated S funetions for the T(t,u)nn reaction. Our preliminary
data are the black circles with 5% absolute errors. Also shown are the data of
Govorov et al. {(triangles) Ref 10; Agnew et al. (crosses) Ref. 11; and Serov
et al. (squares) Ref.l2. The solid curve is an R-Macrix prodiétion of Hale,

Ref. 13, and the dashed curve is from the compilation of Greene, Ref. 1l4.
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